Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages.
نویسندگان
چکیده
Macrophages are central in coordinating immune responses, tissue repair, and regeneration, with different subtypes being associated with inflammation-initiating and proresolving actions. We recently identified a family of macrophage-derived proresolving and tissue regenerative molecules coined maresin conjugates in tissue regeneration (MCTR). Herein, using lipid mediator profiling we identified MCTR in human serum, lymph nodes, and plasma and investigated MCTR biosynthetic pathways in human macrophages. With human recombinant enzymes, primary cells, and enantiomerically pure compounds we found that the synthetic maresin epoxide intermediate 13S,14S-eMaR (13S,14S-epoxy- 4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid) was converted to MCTR1 (13R-glutathionyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) by LTC4S and GSTM4. Incubation of human macrophages with LTC4S inhibitors blocked LTC4 and increased resolvins and lipoxins. The conversion of MCTR1 to MCTR2 (13R-cysteinylglycinyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) was catalyzed by γ-glutamyl transferase (GGT) in human macrophages. Biosynthesis of MCTR3 was mediated by dipeptidases that cleaved the cysteinyl-glycinyl bond of MCTR2 to give 13R-cysteinyl, 14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid. Of note, both GSTM4 and GGT enzymes displayed higher affinity to 13S,14S-eMaR and MCTR1 compared with their classic substrates in the cysteinyl leukotriene metabolome. Together these results establish the MCTR biosynthetic pathway and provide mechanisms in tissue repair and regeneration.
منابع مشابه
Identification and Actions of a Novel Third Maresin Conjugate in Tissue Regeneration: MCTR3
Maresin conjugates in tissue regeneration (MCTR) are a new family of evolutionarily conserved chemical signals that orchestrate host responses to promote tissue regeneration and resolution of infections. Herein, we identified the novel MCTR3 and established rank order potencies and matched the stereochemistries of MCTR1, MCTR2 and MCTR3 using material prepared by total organic synthesis and med...
متن کاملPro-Resolving Mediators in Regulating and Conferring Macrophage Function
Macrophages are central in coordinating the host response to both sterile and infective insults. Clearance of apoptotic cells and cellular debris is a key biological action preformed by macrophages that paves the way to the resolution of local inflammation, repair and regeneration of damaged tissues, and re-establishment of function. The essential fatty acid-derived autacoids termed specialized...
متن کاملMaresin Biosynthesis and Identification of Maresin 2, a New Anti-Inflammatory and Pro-Resolving Mediator from Human Macrophages
Maresins are a new family of anti-inflammatory and pro-resolving lipid mediators biosynthesized from docosahexaenoic acid (DHA) by macrophages. Here we identified a novel pro-resolving product, 13R,14S-dihydroxy-docosahexaenoic acid (13R,14S-diHDHA), produced by human macrophages. PCR mapping of 12-lipoxygenase (12-LOX) mRNA sequence in human macrophages and platelet showed that they are identi...
متن کاملMaresin 1 Biosynthesis and Proresolving Anti-infective Functions with Human-Localized Aggressive Periodontitis Leukocytes.
Localized aggressive periodontitis (LAP) is a distinct form of early-onset periodontitis linked to periodontal infection with uncontrolled inflammation and leukocyte-mediated tissue destruction. The resolution of inflammation is an active process orchestrated by specialized proresolving lipid mediators (SPMs). Since the level of the Maresin pathway marker 14-hydroxy-docosahexaenoic acid (14-HDH...
متن کاملMaresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages.
Nonhealing diabetic wounds are associated with impaired macrophage (Mf) function. Leukocytes and platelets (PLT) play crucial roles in wound healing by poorly understood mechanisms. Here we report the identification and characterization of the maresin-like(L) mediators 14,22-dihydroxy-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acids, 14S,22-diHDHA (maresin-L1), and 14R,22-diHDHA (maresin-L2) that a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 43 شماره
صفحات -
تاریخ انتشار 2016